Bisection Method MATLAB Program with Output
This program implements Bisection Method for finding real root of nonlinear equation in MATLAB.
In this MATLAB program, y is nonlinear function, a & b are two initial guesses and e is tolerable error.
MATLAB Source Code: Bisection Method
% Clearing Screen
clc
% Setting x as symbolic variable
syms x;
% Input Section
y = input('Enter non-linear equations: ');
a = input('Enter first guess: ');
b = input('Enter second guess: ');
e = input('Tolerable error: ');
% Finding Functional Value
fa = eval(subs(y,x,a));
fb = eval(subs(y,x,b));
% Implementing Bisection Method
if fa*fb > 0
disp('Given initial values do not bracket the root.');
else
c = (a+b)/2;
fc = eval(subs(y,x,c));
fprintf('\n\na\t\t\tb\t\t\tc\t\t\tf(c)\n');
while abs(fc)>e
fprintf('%f\t%f\t%f\t%f\n',a,b,c,fc);
if fa*fc< 0
b =c;
else
a =c;
end
c = (a+b)/2;
fc = eval(subs(y,x,c));
end
fprintf('\nRoot is: %f\n', c);
end
Bisection Method MATLAB Output
Enter non-linear equations: cos(x) - x * exp(x) Enter first guess: 0 Enter second guess: 1 Tolerable error: 0.00001 a b c f(c) 0.000000 1.000000 0.500000 0.053222 0.500000 1.000000 0.750000 -0.856061 0.500000 0.750000 0.625000 -0.356691 0.500000 0.625000 0.562500 -0.141294 0.500000 0.562500 0.531250 -0.041512 0.500000 0.531250 0.515625 0.006475 0.515625 0.531250 0.523438 -0.017362 0.515625 0.523438 0.519531 -0.005404 0.515625 0.519531 0.517578 0.000545 0.517578 0.519531 0.518555 -0.002427 0.517578 0.518555 0.518066 -0.000940 0.517578 0.518066 0.517822 -0.000197 0.517578 0.517822 0.517700 0.000174 0.517700 0.517822 0.517761 -0.000012 0.517700 0.517761 0.517731 0.000081 0.517731 0.517761 0.517746 0.000035 0.517746 0.517761 0.517754 0.000011 Root is: 0.517757
Recommended Readings
- Bisection Method Algorithm
- Bisection Method Pseudocode
- Python Program for Bisection Method
- C Program for Bisection Method
- C++ Program for Bisection Method
- MATLAB Program for Bisection Method
- Bisection Method Advantages
- Bisection Method Disadvantages
- Bisection Method Features
- Convergence of Bisection Method
- Bisection Method Online Calculator