Numerical Integration Using Simpson 1/3 Method Pseudocode

In article Simpson 1/3 Rule (Method) Algorithm, we discussed about an algorithm of Simpson 1/3 Rule (Method) for approximating definite integral of a continuous function. Now we're going to develop pseudocode for this method so that it will be easy while implementing using programming languages like C, C++, Matlab, Python.

Simpson's 1/3 Rule Pseudocode

1. Start


2. Define Function f(x)


3. Input lower_limt, upper_limit, sub_interval


4. Calculate: step_size = (lower_limit - upper_limit)/sub_interval


5. Calculate: integration = f(lower_limit) + f(upper_limit)  


6. Set: i=1


7. Loop 
        k= lower_limit + i * step_size 
        
        If i mod 2 = 0
        	integration =  integration + 2 * f(k)
        Else
        	integration =  integration + 4 * f(k)
        End If
        
        i = i+1
        
   While i<= sub_interval


8. integration = integration * step_size/3


9. Print intgertaion as result


10. Stop 

Recommended Readings

  1. Numerical Integration Trapezoidal Method Algorithm
  2. Numerical Integration Using Trapezoidal Method Pseudocode
  3. Numerical Integration Using Trapezoidal Method C Program
  4. Trapezoidal Rule Using C++ with Output
  5. Numerical Integration Using Simpson 1/3 Method Algorithm
  6. Numerical Integration Using Simpson 1/3 Method Pseudocode
  7. Numerical Integration Using Simpson 1/3 Method C Program
  8. Simpson 1/3 Rule Using C++ with Output
  9. Numerical Integration Using Simpson 3/8 Method Algorithm
  10. Numerical Integration Using Simpson 3/8 Method Pseudocode
  11. Numerical Integration Using Simpson 3/8 Method C Program
  12. Simpson 3/8 Rule Using C++ with Output