Numerical Integration Using Simpson 3/8 Method C Program
C Program for approximating definite integral of a continuous function using Simpson's 3/8 Rule (Method)
Simpson 3/8 Rule C Program
#include<stdio.h>
#include<conio.h>
#include<math.h>
/* Define function here */
#define f(x) 1/(1+x*x)
int main()
{
float lower, upper, integration=0.0, stepSize, k;
int i, subInterval;
clrscr();
/* Input */
printf("Enter lower limit of integration: ");
scanf("%f", &lower);
printf("Enter upper limit of integration: ");
scanf("%f", &upper);
printf("Enter number of sub intervals: ");
scanf("%d", &subInterval);
/* Calculation */
/* Finding step size */
stepSize = (upper - lower)/subInterval;
/* Finding Integration Value */
integration = f(lower) + f(upper);
for(i=1; i<= subInterval-1; i++)
{
k = lower + i*stepSize;
if(i%3 == 0)
{
integration = integration + 2 * f(k);
}
else
{
integration = integration + 3 * f(k);
}
}
integration = integration * stepSize*3/8;
printf("\nRequired value of integration is: %.3f", integration);
getch();
return 0;
}
Simpson's 3/8 C Program Output
Enter lower limit of integration: 0 Enter upper limit of integration: 1 Enter number of sub intervals: 12 Required value of integration is: 0.785
Recommended Readings
- Numerical Integration Trapezoidal Method Algorithm
- Numerical Integration Using Trapezoidal Method Pseudocode
- Numerical Integration Using Trapezoidal Method C Program
- Trapezoidal Rule Using C++ with Output
- Numerical Integration Using Simpson 1/3 Method Algorithm
- Numerical Integration Using Simpson 1/3 Method Pseudocode
- Numerical Integration Using Simpson 1/3 Method C Program
- Simpson 1/3 Rule Using C++ with Output
- Numerical Integration Using Simpson 3/8 Method Algorithm
- Numerical Integration Using Simpson 3/8 Method Pseudocode
- Numerical Integration Using Simpson 3/8 Method C Program
- Simpson 3/8 Rule Using C++ with Output