C++ Program for Newton Raphson (NR) Method (with Output)
This program implements Newton Raphson method for finding real root of nonlinear function in C++ programming language.
In this C++ program, x0 is initial guess, e is tolerable error, f(x) is actual function whose root is being obtained using Newton Raphson method.
C++ Source Code: Newton Raphson Method
/* Program: Finding real roots of nonlinear
equation using Newton Raphson Method
Author: CodeSansar
Date: November 18, 2018 */
#include<iostream>
#include<iomanip>
#include<math.h>
#include<stdlib.h>
/* Defining equation to be solved.
Change this equation to solve another problem. */
#define f(x) 3*x - cos(x) -1
/* Defining derivative of g(x).
As you change f(x), change this function also. */
#define g(x) 3 + sin(x)
using namespace std;
int main()
{
float x0, x1, f0, f1, g0, e;
int step = 1, N;
/* Setting precision and writing floating point values in fixed-point notation. */
cout<< setprecision(6)<< fixed;
/* Inputs */
cout<<"Enter initial guess: ";
cin>>x0;
cout<<"Enter tolerable error: ";
cin>>e;
cout<<"Enter maximum iteration: ";
cin>>N;
/* Implementing Newton Raphson Method */
cout<< endl<<"*********************"<< endl;
cout<<"Newton Raphson Method"<< endl;
cout<<"*********************"<< endl;
do
{
g0 = g(x0);
f0 = f(x0);
if(g0 == 0.0)
{
cout<<"Mathematical Error.";
exit(0);
}
x1 = x0 - f0/g0;
cout<<"Iteration-"<< step<<":\t x = "<< setw(10)<< x1<<" and f(x) = "<< setw(10)<< f(x1)<< endl;
x0 = x1;
step = step+1;
if(step > N)
{
cout<<"Not Convergent.";
exit(0);
}
f1 = f(x1);
}while(fabs(f1)>e);
cout<< endl<<"Root is: "<< x1;
return 0;
}
Newton Raphson C++ Output
Enter initial guess: 2 Enter tolerable error: 0.000001 Enter maximum iteration: 10 ********************* Newton Raphson Method ********************* Iteration-1: x1 = 0.614547 and f(x1) = 0.026607 Iteration-2: x1 = 0.607108 and f(x1) = 0.000023 Iteration-3: x1 = 0.607102 and f(x1) = -0.000000 Root is: 0.607102