Secant Method Using C++ with Output
This program implements Secant Method for finding real root of nonlinear equation in C++ programming language.
In this C++ program, x0 & x1 are two initial guess values, e is tolerable error and f(x) is actual non-linear function whose root is being obtained using secant line method.
C++ Source Code: Secant Method
/* Program: Finding real roots of nonlinear
equation using Secant Method
Author: CodeSansar
Date: November 18, 2018 */
#include<iostream>
#include<iomanip>
#include<math.h>
#include<stdlib.h>
/* Defining equation to be solved.
Change this equation to solve another problem. */
#define f(x) x*x*x - 2*x - 5
using namespace std;
int main()
{
float x0, x1, x2, f0, f1, f2, e;
int step = 1, N;
/* Setting precision and writing floating point values in fixed-point notation. */
cout<< setprecision(6)<< fixed;
/* Inputs */
cout<<"Enter first guess: ";
cin>>x0;
cout<<"Enter second guess: ";
cin>>x1;
cout<<"Enter tolerable error: ";
cin>>e;
cout<<"Enter maximum iteration: ";
cin>>N;
/* Implementing Secant Method */
cout<< endl<<"**************"<< endl;
cout<<"Secant Method"<< endl;
cout<<"**************"<< endl;
do
{
f0 = f(x0);
f1 = f(x1);
if(f0 == f1)
{
cout<<"Mathematical Error.";
exit(0);
}
x2 = x1 - (x1 - x0) * f1/(f1-f0);
f2 = f(x2);
cout<<"Iteration-"<< step<<":\t x2 = "<< setw(10)<< x2<<" and f(x2) = "<< setw(10)<< f(x2)<< endl;
x0 = x1;
f0 = f1;
x1 = x2;
f1 = f2;
step = step + 1;
if(step > N)
{
cout<<"Not Convergent.";
exit(0);
}
}while(fabs(f2)>e);
cout<< endl<<"Root is: "<< x2;
return 0;
}
C++ Program Output: Secant Method
Enter first guess: 0 Enter second guess: 1 Enter tolerable error: 0.000001 Enter maximum iteration: 10 ************** Secant Method ************** Iteration-1: x2 = -5.000000 and f(x2) = -120.000000 Iteration-2: x2 = 1.315789 and f(x2) = -5.353550 Iteration-3: x2 = 1.610713 and f(x2) = -4.042600 Iteration-4: x2 = 2.520173 and f(x2) = 5.965955 Iteration-5: x2 = 1.978057 and f(x2) = -1.216554 Iteration-6: x2 = 2.069879 and f(x2) = -0.271572 Iteration-7: x2 = 2.096267 and f(x2) = 0.019166 Iteration-8: x2 = 2.094527 and f(x2) = -0.000268 Iteration-9: x2 = 2.094552 and f(x2) = 0.000001 Root is: 2.094552